
LABORATOIRE D’I NFORMATIQUE, DE ROBOTIQUE
ET DE M ICROÉLECTRONIQUE DEMONTPELLIER

Unité Mixte CNRS - Universit́e Montpellier II C 09928

RAPPORT DE RECHERCHE

The MADK IT Agent Platform
Architecture

Olivier G UTKNECHT

gutkneco@lirmm.fr

Jacques FERBER

ferber@lirmm.fr

Fabien MICHEL

fmichel@lirmm.fr

05/2000 R.R.LIRMM 000xx

161, Rue Ada - 34392 Montpellier Cedex 5 - France
Tél: (33) 67 41 85 85 - Fax: (33) 67 41 85 00



Résuḿe
In this report, we present MadKit (multi-agent development kit), a generic

multi-agent platform. This toolkit is based on a organizational model. It uses concepts
of groups and roles for agents to manage different agent models and multi-agent
systems at the same time, while keeping a global structure.

We discuss the architecture of MadKit, based on a minimalist agent kernel
decoupled from specific agency models. Basic services like distributed message
passing, migration or monitoring are provided by platform agents for maximal
flexibility. The componential interface model allows variations in platform appea-
rance and classes of usage.

We illustrate this approach by explaining some consequences of the architec-
ture and describe our motivation for MadKit design : integration of heterogeneous
agent applications, reuse of agent social structure patterns, and versatility of the
application platform. A summary is given of some MadKit-based applications to
date.

1 Introduction

1.1 The heterogeneity issue

A major characteristic in agent research and applications is the high heterogeneity
of the field.

By heterogeneity, we mean bothagent model heterogeneity, characterizing agents
built and described with different models and formalisms ;language heterogeneity,
with agents using different communication and interaction schemes, and finallyappli-
cative heterogeneity, as multi-agent systems are used with various goals and in many
applicative domains.

Many successful theories and applications has been proposed in different fields
of multi-agent research : interface agents [8], mobile agents [7], information retrieval
agents [11], etc.

We believe that being able to take advantage of this diversity of approaches simul-
taneously is important to build complex systems while keeping heterogeneity mana-
geable. An “one size fits all” seems rather adventurous ; thus, the interesting question
is how to establish conceptual modelsandsoftware toolkits to facilitate integration.

We also advocates that interoperability in agent system should be envisaged at agent
level. Existing interoperability mechanisms in software engineering (CORBA, XML,
...) are interesting for the foundations they procure, but are not the universal answer
to our preoccupation. At least, the relationship between the underlying interoperability
platform and the agent layer be clearly defined and identified.

1.2 MadKit as a multi multi-agent system

We took the agent platform field as an example, but the same diversity of ap-
proaches exists within agent formalisms, communication models, and architectures.

We have designed a model, called AALAADIN , that structures multi-agent systems,
and implemented a platform based on this model. The platform itself has been realized
to take full advantage of the model. In this report, we will particularly focus on the
MADK IT platform. We will see that a structural model at multi-agent systems level
can ease agent diversity integration within a platform, hence this qualification of “multi
multi-agent systems”.

1



The MADK IT toolkit was motivated by the need to provide a generic, highly custo-
mizable and scalable agent platform. The goal of building a foundation layer for various
agent models was essential, as well as making the basic services provided completely
extensible and replaceable.

We briefly introduce the AALAADIN conceptual model in section 2. Section 3 des-
cribes the platform architecture. It presents the concept of “agent micro-kernel”, how
system services are provided by agents and gives an overview of the agent interface mo-
del. Section 4 presents some experiments and systems built with MADK IT. Section 5
briefly talks about future work and concludes.

2 The agent/group/role model

The MADK IT platform architecture is rooted in the AGR (agent-group-role) model
developed in the context of the AALAADIN project. MADK IT both implements and
uses for its own management this model. We will just summarize it here, and refer to
[3] for a more general overview of the project and [4] for a detailed description of its
formal operational semantics.

We advocate that considering organizational concepts, such as groups, roles, struc-
tures, dependencies, etc. as first class citizens might be a key issue for building large
scale, heterogeneous systems.

In this definition, an organization is viewed as a framework for activity and interac-
tion through the definition of groups, roles and their relationships. But, by avoiding an
agent-oriented viewpoint, an organization is regarded as a structural relationship bet-
ween a collection of agents. Thus, an organization can be described solely on the basis
of its structure, i.e. by the way groups and roles are arranged to form a whole, without
being concerned with the way agents actually behave, and multi-agent systems will be
analyzed from the “outside”, as a set of interaction modes. The specific architecture of
agents is purposely not addressed.

The AALAADIN model is based on three core concepts :agent, group and role.
Figure 1 presents a diagram of this model.

contains

handlesis member

Group

Agent

Role

FIG. 1 – The core model

2



2.1 Agent

The model places no constraints on the internal architecture of agents. Anagent
is only specified as an active communicating entity which playsroles within groups.
This agent definition is intentionally general to allow agent designers to adopt the most
accurate definition of agent-hood relative to their application. The agent designer is
responsible for choosing the most appropriate agent model as internal architecture.

2.2 Group

Groupsare defined as atomic sets of agent aggregation. Each agent is part of one or
more groups. In its most basic form, the group is only a way to tag a set of agents. In a
more developed form,in conjunction with the role definition, it may represent any usual
multi-agent system. An agent can be a member ofn groups at the same time. A major
point of AALAADIN groups is that they can freely overlap. A group can be founded by
any agent.

2.3 Role

The role is an abstract representation of an agent function, service or identification
within a group. Each agent can handle multiple roles, and each role handled by an agent
is local to a group. Handling a role in a group must be requested by the candidate agent,
and is not necessarily awarded. Abstract communication schemes are thus defined from
roles.

The model is not a static description of an agent organization. It also allows to de-
fine rules to specify the part of the dynamics of the agent organization. Note that the
particular mechanism for role access within a group is not defined (systematic accep-
tance or refusal, admission conditioned by skills or by an admission dialog, relation to
a group metrics,...).

2.4 Discussion

We see overlapping groups as a trade-off between a flat world were agents are not
part of any structure and models in which organizations of agents are considered as
atomic agents, which raises important problems of coherence, structure and semantics.

In our model, when agentification of a group seems necessary to the designed , a
role of “representative” of the group is associated to one of its member to act as the
proxy for the whole group for the external world.

In a real-world metaphor, this could be compared to the situation when a person is
in negotiation with a company. The company as a whole is never part of the interaction :
instead, an individual is therepresentativeof the company in the dialog.

3 Architecture

The MADK IT platform is built around this model. In addition to the three core
concepts, the platform adds three design principles :

– Micro-kernel architecture
– Agentification of services
– Graphic component model

3



MadKit itself is a set of packages of Java classes that implements the agent ker-
nel, the various libraries of messages, probes and agents. It also includes a graphical
development environment and standard agent models

Agent
Application

Agent
Application

Agent
Application System

Agent
System
Agent

Java Bean Java Bean

Synchronous Engine Local messaging

Graphical Host Application

Java Bean

Group/Role Manager

Agent Micro-Kernel

FIG. 2 – MadKit Architecture Diagram

The basic philosophy of the MADK IT architecture is to use wherever possible the
platform for its own management : any service beside those assured by the micro-kernel
are handled by agents. Thus the platform is not an agent platform is the classical sense.
The reduced size of the micro-kernel, combined with the principle of modular services
managed by agents enable a range of multiple, scalable platforms and construction of
libraries of specialized agent models.

Agent groups have been proposed in other architectures, such as [1], although the
mechanism is specific to mobile agents and lacks our ability to handle multiple groups
and multiple roles in a generic model.

3.1 Agent micro-kernel

The MADK IT micro-kernel is a small (less than 40 Kb) and optimized agent kernel.
The term “micro-kernel” is intentionnaly used as a reference to the role of micro-

kernels in the domain of OS engineering [9]. We could directly translate their motto
into : ‘incorporating a number of key facilities that allow the efficient deployment of
agent toolkits.”

The MADK IT kernel only handles the following tasks :

Control of local groups and roles As most of the interoperability and extensibility
possibilities in MADK IT relies on the organizational layer, it is mandatory that
group and role are handled at the lowest level in the platform, to provide this
functionality to any agent The micro-kernel is responsible for maintaining cor-
rect information about group members and roles handled. It also checks if re-
quests made on groups and roles structures are correct (ie : evaluating - or dele-
gating evaluation - of role functions).

Agent life-cycle managementThe kernel also launches (and eventually kills) agents,
and maintain tables and references of agent instances, it is the only module in
MADK IT that owns direct references to the actual agents. It also handles the

4



agent personal information and assigns it a globally unique identifier (kernel
address plus agent identification on the local kernel) , theAgentAddress upon
creation. This identifier can be redefined to accept standardized agent naming
schemes.

Local message passingThe kernel manages routing and distribution of messages bet-
weenlocal agents. The basic mechanism relies on a copy-on-write implementa-
tion to avoid unnecessary operations.

The kernel itself is wrapped in an special agent, theKernelAgent , which is
created at bootstrap. It permits control and monitoring of the kernel within the agent
model.

Kernel hooks

The kernel itself is fully extensible through “kernel hooks”. Any entitled agent (i.e.
an agent that has been allowed to be member of thesystem group) can request to the
KernelAgent to subscribe to a kernel hooks.

These hooks are the generic subscribe-and-publish scheme allowing extension of
the core behavior of the platform. Every core function in the kernel (adding an agent to
a group, launching an agent, sending a message) implements this mechanisms.

Monitor hooks Any number of agents can subscribe to a monitoring hook. In this
type of hook, invocation of a kernel operation make theKernelAgent send an
“inform” message to the agents that requested a monitor hook on this operation,
with the arguments of this operation as the content of the message. For instance,
this is how are written the agents that monitor the population or organization in
the platform.

Interceptor hooks These hooks are similar to the previous type, but only one agent
can hold an interceptor hook on a give kernel operation. Furthermore, an inter-
ceptor hook prevents the execution of the implemented kernel operation. It is
particularly useful to write distributed messaging agents, group synchronizers,
security control in groups, etc. by changing the behavior of a basic operation.
The reduced number of kernel calls and the simple underlying model helps the
modification of these call while preserving their semantics.

When a kernel call having associated hooks is invoked, the information is transmit-
ted to theKernelAgent which does the message transmission.

Kernel Operation

Hooks enable monitoring and change of behavior, but thesystem group defines
additional interactions between a member and theKernelAgent to allowactionson
the kernel.

For instance, a systemcommunicator agent can inject in the local kernel a message
received through a socket connection with a distant madkit platform.

3.2 Agents

The generic agent is MADK IT is a class defining basic life-cycle (what to do upon
activation, execution, and termination).

5



– Control and life-cycle. The main agent class in MADK IT defines primitives rela-
ted to message passing, plus group and role management, but does not implement
a specific execution policy. A subclass adds support for concurrent, thread-based
execution, which is the natural model for coarse-grained collaborative or co-
gnitive agent. Additional subclasses implements synchronous execution through
an external scheduler, focused on reactive or hybrid architectures : many fine-
grained agents.

– Communication is achieved through asynchronous message passing, with primi-
tives to directly send a message to another agent represented by itsAgentAd-
dress , or the higher-level version that send or broadcast to one or all agents
having a given role in a specific group.

– Group and roles actions and requests are defined at action level. The agent deve-
loper is completely free to define the agent behavior, but the organizational view
will be always present.

Message passing

Messages in the MADK IT platform are defined by inheritance from a genericMes-
sage class. Thus specific messages can be defined for intra-group communication, and
allows a group to have its specific communication attributes. Messages receivers and
senders are identified with theirAgentAddress . MadKit do not define interaction
mechanism, which can be defined on an ad-hoc basis, or built in a specific agent model
library.

Agent models

Several specific agent libraries have been built above this infrastructure, notably :
– Bindings to the Scheme language [2]
– An agent model that wraps the JESS rule engine [5].
– Various models for artificial life / reactive systems, such as a “turtle kit” that

mimics some functions of the StarLogo environement [10].
– An actor model implementation
– Agent construction tools running themselves as agents in the platform 3.

3.3 Agentification of services

In contrast to other architectures, MADK IT uses agents to achieve things like distri-
buted message passing, migration control, dynamic security, and other aspect of system
management. These different services are represented in the platform as roles in some
specific groups, defined in an abstract organizational structure. This allows a very high
level of customization, as these service agents can be replaced without hurdle.

For instance, external developers have built a newgroup synchronizer agent that
use a shared JNDI directory to maintain group information across distributed kernel
instead of relying on our provided (but MadKit-specific) system. Their agent uses some
hooks in the kernel to achieve its goal and replaced the providedgroup synchronizer
agent by requesting the same role in thesystem group. Other agents did not notice the
change.

The role delegation principle has the other interesting effect to allow easy scaling.
An agent can hold several roles at the beginning of a group, and as the group grows,
launches other agents and delegates them some of these roles.

6



FIG. 3 – SEDIT tools running as agents in MADK IT

Communication and distribution

As messaging, as well as groups and roles management use theAgentAddress
identifier, and as this identifier is unique across distant kernels, MADK IT agents can
be transparently distributed without changing anything in the agent code. Groups can
spawn across different kernels, and agents usually do not notice it.

Distribution in the agent platform relies on two roles in thesystem group :
– Thecommunicator agent is used by the micro-kernel to route non-local messages

to othercommunicator agents, on distant platforms, which therefore injects the
now-local messages in their kernel (see figure 4)

– Thegroup synchronizer agents allows groups and roles to be distributed among
kernels by sending groups and roles changes to other synchronizers, which in
turn enter these information in their local kernel. Note that these group syn-
chronizers use themselves their own distributed group to ease distributed group
management.

Since the communication mechanisms are built as regular agents in the platform,
communication and migration could be tailored to specific platform requirements only
by changing the communication agents, for instance in disconnected mode for laptop.

An MADK IT platform can run in full local mode just by not launching the commu-
nication agents.

These services are not necessarily handled by only one agent. For instance the
communicator agent can be therepresentativefor a group gathering agents specialized
in sockets or CORBA communications and delegate the message to the appropriate
agent

7



Kernel 2Kernel 1

Message
interception

Message
Insertion

Agent to agent communication

A B
Communication

Agent
Communication
Agent

Specific Transport protocol
(sockets, CORBA, IR)

FIG. 4 – Communication agents

3.4 Componential graphical architecture

MADK IT graphic model is based on independent graphic components, using the
Java Beans specification in the standard version.

Each agent is solely responsible for its own graphical interface, in every aspects
(rendering, event processing, actions...) An agent interface can be a simple label, a
complex construction based on multiple widgets, or a legacy bean software module.
A “graphic shell” launches the kernel and setup the interfaces for the various agents
and manage them in a global GUI (for instance : each agent has its own window, or is
mapped in a global worksheet, or is combined with another agent interface,...).

As the graphic shell is a classic software module, it can be wrapped in an agent for
maximum flexibility, allowing control of other agent interfaces by a regular MADK IT

agent that can be part of any interaction scenario.

3.5 Consequences and discussion

The conjunction of the agent micro-kernel and the decoupled agent GUIs as well
as a modular set of agent services allows important customizations of the MADK IT

platform (figure 5). For instance, the following “varieties” of the platform have been
developed :

– A complete graphical environment to develop, and test multi-agent systems, cal-
led the “G-Box”. It allows graphical control of agent life-cycle (launch, termina-
tion, pause), dynamic loading of agents, and uses introspection on agent code to
discover at runtime groups and roles, references to other agents, and offer direct
manipulation of these structures.

– A text-only mode, only running the micro-kernel without instantiating graphical
interfaces of running agents. This platform is useful to keep a small “agent dae-
mon” running on a machine and agents providing services of brokering, naming
or routing for other machines.

– An applet wrapper, which carries the agent micro-kernel with some application
agents, and executes in a distant browser.

– A “classic” application that would embed a MadKit kernel and hosts agents that
handles the collaborative / dynamic aspects. For instance, this was the imple-

8



FIG. 5 – MADK IT running in applet, G-Box and console modes

9



FIG. 6 – A simplistic example of a MadKit kernel and two agents on a Palm device

mentation choice made in the Wex application described below.
– Something more experimental is a version of MADK IT 3.5 tailored for the Palm

Pilot. The kernel is slightly tweaked to only use the set of classes allowed on
the Java Platform Micro Edition[6]. A specificcommunicator handles infrared
messaging.

4 Applications

MadKit has been used in various research teams for nearly two year in projects co-
vering a wide range of applications, from simulation of hybrid architectures for control
of submarine robots to evaluation of social networks or study of multi-agent control in
a production line.

For instance, Wex, developed by Euriware S.A., is a complex MADK IT applica-
tion for knowledge-management applications. It federates information from different
data sources (databases, support tools, web search engines, current page browsed by
the user and parsed...) and present unified views of these highly heterogeneous know-
ledge sources. Users can maintain shared ontologies on their domain. Agents have been
implemented to encapsulate the various mechanisms to retrieve and transform informa-
tion. The abstract organizational structure has been defined, and the various agents can
plugged in to adapt the platform to the client specific needs.

10



5 Conclusion and future work

In this report, we presented an agent toolkit based on an organizational model,
and we argued that that large and complex agent systems should be able to cope with
heterogeneity of models, communications and individual agent architectures.

We plan to extend this work in three directions. We plan to continue work on the
underlying model, especially in the context of formal expression and design methodo-
logies. Secondly, we will extend the platform itself by refining existing system agents,
proposing more predefined agents and groups libraries. Finally, we are planning to built
additional layers and models for multi-agent based simulation.

Références

[1] Joachim Baumann and Nikolaos Radouniklis. Agent groups in mobile agent sys-
tems. InIFIP WG 6.1, International Conference on Distributed Applications and
Interoperable Systems (DAIS 97), 1997.

[2] Per Bothner. Functional scripting languages for the jvm. In3rd Annual European
Conference on Java and Object Orientation, Arhus, Denmark, 1999.

[3] Jacques Ferber and Olivier Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. InThird International Conference on
Multi-Agent Systems (ICMAS ’98) Proceedings, pages 128–135. IEEE Computer
Society, 1998.

[4] Jacques Ferber and Olivier Gutknecht. Operational semantics of a role-based
agent architecture. InProceedings of the 6th Int. Workshop on Agent Theories,
Architectures and Languages. Springer-Verlag, 1999.

[5] Ernest J. Friedman-Hill.Jess, The Java Expert System Shell. Distributed Compu-
ting Systems, Sandia National Laboratories, Livermore, CA, 2000.

[6] Sun Microsystems Inc. The k virtual machine white paper. Technical report,
2550, Garcia Avenue, Mountain View CA 94043, 1997.

[7] Frederick C. Knabe. An overview of mobile agent programming. InProceedings
of the 5th LOMAPS Workshop on Analysis and Verification of Multiple-Agent
Languages, Stockholm, Sweden, June 1996.

[8] Brenda Laurel. Interface agents : Metaphors with character. In Brenda Laurel,
editor,The Art of Human Computer Interface Design, pages 355–365. Addison-
Wesley, 1990.

[9] Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael Jones,
Daniel Julin, Douglas Orr, and Richard Sanzi. Mach : A foundation for Open
Systems. InProceedings of the 34th Computer Society Ithe Second Workshop on
Workstation Operating Systems(WWOS2), September 1989.

[10] Mitchel Resnick.Turtles, Termites, and Traffic Jams : Explorations in Massively
Parallel Microworlds. MIT Press, 1994.

[11] E. M. Voorhees. Software agents for information retrieval. In O. Etzioni, editor,
Software Agents — Papers from the 1994 Spring Symposium (Technical Report
SS–94–03), pages 126–129, March 1994.

11


	Introduction
	The heterogeneity issue
	MadKit as a multi multi-agent system

	The agent/group/role model
	Agent
	Group
	Role
	Discussion

	Architecture
	Agent micro-kernel
	Agents
	Agentification of services
	Componential graphical architecture
	Consequences and discussion

	Applications
	Conclusion and future work

