
From Agents to Organizations:
an Organizational View of Multi-Agent Systems

Jacques Ferber
LIRMM – University of Montpellier II

161 rue Ada
34000 Montpellier

France

ferber@lirmm.fr

Olivier Gutknecht
LIRMM – University of Montpellier II

161 rue Ada
34000 Montpellier

France

olg@lirmm.fr

Fabien Michel
LIRMM – University of Montpellier II

161 rue Ada
34000 Montpellier

France

fmichel@lirmm.fr

ABSTRACT
While multi-agent systems seem to provide a good basis to build
complex software systems, this paper points out some of the
drawbacks of classical “agent centered” multi-agent systems. To
resolve these difficulties we claim that organization centered
multi-agent system, or OCMAS for short, may be used. We
propose a set of general principles from which true OCMAS may
be designed. One of these principles is not to assume anything
about the cognitive capabilities of agents. In order to show how
OCMAS models may be designed, we propose a very concise and
minimal OCMAS model called AGR, for Agent/Group/Role. We
propose a set of notations and a methodological framework to
help the designer to build MAS using AGR.

Categories and Subject Descriptors
Groups, teams, organizations and societies. Methodologies and
tools for specification, design, implementation.

Keywords
Multi-agent systems, organizations, organizational structures,
multi-agent methodology, multi-agent design.

1. INTRODUCTION
Since their coming out in the 80’s multi-agent systems have been
considered as “societies of agents”, i.e. as a set of agents that
interact together to coordinate their behavior and often cooperate
to achieve some collective goal. It is clear, from this conception,
that the body of multi-agent researches should be concerned by
both agents and societies. However, an important emphasis has
been put on the agent side. Multi-agent systems have particularly
been studied at the micro-level, i.e. at the level of the states of an
agent and of the relation between these states and its overall
behavior. In this view, communications are seen as speech acts

whose meaning may be described in terms of the mental states of
an agent. The development of communication languages such as
KQML and FIPA ACL follows directly from this frame of mind.

We will use the term “agent centered multi-agent system” or
ACMAS for short to talk about this type of classical multi-agent
systems designed in terms of agents’ mental states. As we will see
in the following section, ACMAS suffer from some weaknesses
that cannot be solved at the agent level, because they reside deep
in the core of ACMAS foundational principles.

Recently a particular interest has been given to the use of
organizational concepts within MAS where the concepts of
‘organizations’, ‘groups’, ‘communities’, ‘roles’, ‘functions’, etc.
play an important role [1][2][3]. We will call ‘organization
centered multi-agent systems’ or OCMAS for short, multi-agent
systems whose foundation lie in this kind of organizational
concepts.

Thinking in terms of organization design differs from the agent-
centered approach that has been dominant during many years. An
organization oriented MAS is not considered any more in terms of
mental states, but only on capabilities and constraints, on
organizational concepts such as roles (or function, or position),
groups (or communities), tasks (or activities) and interaction
protocols (or dialogue structure), thus on what relates the
structure of an organization to the externally observable behavior
of its agents. However, while OCMAS might solve, as we will
see, the main weaknesses of ACMAS, their characteristics and
consequences, have somehow been left out and have not been
presented clearly. We will see in this paper, that it is possible to
design MAS using only organizational concepts. At first, this
approach needs a new state of mind to get away from the agent
oriented, now classical, conception. However, it does not mean
that agent mental states must be thrown away; we only want to
stress that it is possible to build organizations as frameworks
where agents with different cognitive abilities may interact.

Section 2 will show that some of the weaknesses of ACMAS
appear as consequences of the mere foundational principles,
somehow implicit, of ACMAS. Section 3 will introduce the main
concepts of OCMAS and a set of fundamental principles that
could be considered as a kind of manifesto for designing MAS
from a pure organizational perspective.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference AAMAS’03, Month 7, 2003, Melbourn, Australia.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

ferber
Version of Novembre 2002 - This paper has been submitted to AAMAS 2003 - Please do not redistribute and check at www.lirmm.fr/~ferber/publications for a more recent version

In order to show that it is possible to design OCMAS in this
framework, we will present, in section 4, a generic but simple
organizational model for building OCMAS, called AGR for
Agent/Group/Role. This presentation will include the basic
concepts and the notation one can use to describe organizations.
The remaining sections will introduce a simple example and a
sketch of a methodology based on these organizational concepts.

2. DRAWBACKS OF ACMAS
2.1.1 Analysis of some drawbacks of the classical
ACMAS approach
It has been shown that the world of software engineering may
benefits from the concepts and architectures proposed by the
MAS community [4][5] in order to simplify the design of
complex software systems.

In order to make MAS systems ready for industrial applications, a
non-profit association called FIPA, has proposed a set of norms
and standards that designers of multi-agent systems should meet
to make their MAS compatible with other systems. An interesting
point about these standards, and the platforms and the platform
that have been built according to them (see Jade and Fipa-OS for
instance), is that they are based on some assumption that lies
somewhere in the core of most of early work on MAS.

1. An agent may communicate with any other agent
2. An agent provides a set of services, which are available to

every other agent in the system.
3. It is the responsibility of each agent to constrain its

accessibility from other agents.
4. It is the responsibility of each agent to define its relation,

contracts, etc. with other agents. Thus, an agent “knows”
directly (through its acquaintances) the set of agents with
which it may interact.

5. Each agent contains with its name its way to be accessed
from the outside (the notion of Agent ID well known by all
designers of MAS). Therefore, agents are supposed to be
autonomous and no constraint is placed on the way they
interact.

In this situation, as Jennings and Wooldridge have been pointed
out, ACMAS may suffer some drawbacks when engineering large
systems:

 “Another common misconception is that agent-based systems
require no real structure. While this may be true in certain cases,
most agent systems require considerably more system-level
engineering than this. Some way of structuring the society is
typically needed to reduce the system’s complexity, to increase
the system’s efficiency, and to more accurately model the
problem being tackled.” [6]. This leads to two major drawbacks,
according to [4]:

• The patterns and the outcomes of the interactions are
inherently unpredictable.

• Predicting the behavior of the overall system based on its
constituent components is extremely difficult (sometimes
impossible) because of the strong possibility of emergent
(and unwanted) behavior.

Surely, freedom has a price: it is not possible to suppose that
agents designed by different designers could interact altogether
without any problems. Some assumptions have to be made about
the primitives of communications (the “performatives” of the
language) and about the architecture of agents (for instance,
agents may be assumed to behave purposively in a cognitive way,
using some kind of BDI architecture). However, agents do not
have access to these constraints that are specified as ISO-like
standards, and they do not have the possibility to accept, or
refuse, to follow them. This imposes a strong homogeneity on
agents: agents are supposed to use the same language and to be
built using very similar architectures.

The other weakness of these MAS is

1. Security of applications: The possibility that all agents may
communicate without any external control may lead to
security problems. When all agent may interact freely
altogether, it is the responsibility of agents (and therefore of
the application designer) to check the qualification of its
interlocutors} and to implement security controls. Because
there is no “general” security management, it is easy for an
agent to act as a pirate and use the system fraudulently. On
the contrary, too strong security measures could prevent the
system to work efficiently on domains where speed and
response is more important than security.

2. Modularity: in classical software engineering, entities that
closely work together are grouped into modules or
“packages”. For each module, rules of visibility are defined.
Some entities may be seen by other packages (and even by
the whole software) whereas others, so called private
entities, are hidden and therefore not accessible from outside
the package. This is not possible with AOMAS where all
agents are accessible from everywhere. It should be
important to propose a way to group together agents that
have to work together. However, this proposal should not
stay on static grounds, but propose a way to group together
active agents that work together. Moreover, agents should be
able to modify dynamically their grouping during their
lifetime, according to some general design rules.

3. Framework/component approach. Modern software
engineering has shown the importance of the
framework/component concept. A framework is an abstract
architecture in which components plug-in. It is often
necessary to define sub-frameworks of frameworks. For
instance in a GUI framework, some heavy components, such
as charts, trees or tables (see the JTree or JTable components
of Java), may introduce their own sub-framework.
Unfortunately, in ACMAS, there is only one framework, the
platform itself, and it is not possible to describe sub-
framework in which specific interactions could be built.

2.1.2 Solution
To overcome these difficulties, Jennings proposes a solution in
the definition of a social level characterization of agent based
systems, which follows Newell’s levels of computer systems.
However, this paper did not develop the main features of
organization and their consequences in the process of analysis and
design of MAS.

In the following, we will extend and continue these prospects by
presenting and analyzing the main concepts of organization
centered multi-agent systems (OCMAS) and their properties for
building MAS. During our discussion, we will focus on a specific
model of OCMAS, called AGR, for Agent/Group/Role, a simple
though very powerful and generic organizational model of multi-
agent systems.

3. ORGANIZATION CENTERED MAS
3.1 Definitions
There are several definitions of what an organization exactly
means. Indeed, the word “organization” is a complex word that
has several meanings. In [7] Gasser proposed the definition of
organization to which we subscribe:

An organization provides a framework for activity and
interaction through the definition of roles, behavioral
expectations and authority relationships (e. g. control).

This definition is rather general and does not provide any clue on
how to design organizations. In [8] Jennings and Wooldridge
propose a more practical definition:

We view an organisation as a collection of roles, that
stand in certain relationships to one another, and that take
part in systematic institutionalised patterns of interactions
with other roles”.

However, this definition lacks a very important feature of
organizations: their partitioning, the way boundaries are placed
between sub-organizations. Except in very small organizations,
organizations are structured as aggregates of several partitions,
sometimes called groups or communities, contexts, department,
services, etc. and each partition may itself be decomposed into
sub-partitions.
From these definitions, it is possible to derive the main features of
organizations:
1. An organization is constituted of agents (individuals) that

manifest a behavior.
2. The overall organization may be partitioned into groups

(partition) that may overlap.
3. Behaviors of agents are functionally related to the overall

organization activity (concept of role).
4. Agents are engaged into dynamic relationship (also called

patterns of activities [7]) which may be “typed” using a
taxonomy of roles, tasks or protocols, thus describing a kind
of supra-individuality.

5. Types of behaviors are related through relationships between
roles, tasks and protocols.

An important element of organizations is the concept of role. A
role is a description of an abstract behavior of agents. A role
describes the constraints (obligations, requirements, skills) that an
agent will have to satisfy to obtain a role, the benefits (abilities,
authorization, profits) that an agent will receive in playing that
role, and the responsibilities associated to that role. A role is also
the placeholder for the description of patterns of interactions in
which an agent playing that role will have to perform.
Organization may be seen at two different levels: at the
organizational (or social) level and at the concrete (or agent) level
(from [9]):

We will call organizational structure [10] (or simply structure, if
there is no ambiguity) what persists when components or
individuals enter or leave an organization, i.e. the relationships
that makes an aggregate of elements a whole. Thus, the
organizational structure is what characterizes a class of concrete
organizations at the abstract or organizational level.
Conversely, a concrete organization (or simply organization),
which resides at the agent level, is one possible instantiation of an
organizational structure. This is a realization consisting of entities
that effectively take part in a whole, together with all the links
that bring these agents into association at any given moment. It is
possible to relate an organizational structure to a concrete
organization, but the same organizational structure can act as a
basis for the definition of several concrete organizations
An organization consists in two aspects: a structural aspect (also
called static aspect) and a dynamic aspect:

The structural aspect of an organization is made of two parts: a
partitioning structure and a role structure. A partitioning
structure indicates how agents are assembled into groups and how
groups are related to each other. A role structure is defined, for
each group, by a set of roles and their relationships. This structure
defines also the set of constraints that agents should satisfy to
play a specific role and the benefits resulting to that role.

The dynamic aspect of an organization is related to the
institutionalized patterns of interactions that are defined within
roles. It defines also:

1. the modalities to create, kill, enter groups and play roles;
2. how these modalities are applied and how obligations and

permissions are controlled;
3. how partitioning and role structures are related to agents’

behaviors.

3.2 General principles of OCMAS
Previous sections have allowed us to understand the basic
concepts of organizations. It is now time to consider multi-agent
systems from an organizational perspective. The question now is:
what are the main principles from which organization centered
multi-agent systems (OCMAS) may be approached for both
analysis and design?
The use of organizations provides a new way for describing the
structures and the interactions that take place in MAS. The
organizational level, the way organizations are described is thus
situated in another level than the agent level that is often the only
level considered in ACMAS. This level, which may be called
“organizational level” (or “social level” as in [4]) is responsible
for the description of the structural and dynamical aspects of
organizations. This organizational level is an abstract
representation of the concrete organization, i.e. a specification of
the structural and dynamical aspects of a MAS, which describes
the expected relationships and patterns of activity which should
occur at the agent level and therefore the constraints and
potentialities that constitute the horizon in which agents behave.

Principle 1: The organizational level describes the “what” and
not the “how”. The organizational level imposes a structure into
the pattern of agents’ activities, but does not describe how agents
behave. In other terms, the organizational level does not contain
any “code” which could be executed by agents, but provides

specifications, using some kind of norms or laws, of the limits and
expectations that are placed on the agents’ behavior.

Principle 2: No agent description and therefore no mental issues
at the organizational level. The organizational level should not
say anything about the way agents would interpret this level.
Thus, reactive agents as well as intentional agents may act in an
organization. In other words, ant colonies are as much
organizations as human enterprises. Moreover, seen from a certain
distance, or using an intentional stance [11] it is impossible to say
if the ants or the humans are intentional or reactive. Thus, the
organizational level should get rid of any mental issues such as
beliefs, desires, intentions, goals, etc. and provide only
descriptions of expected behaviors.

Principle 3: An organization provides a way for partitioning a
system, each partition (or groups) constitutes a context of
interaction for agents. Thus, a group is an organizational unit in
which all members are able to interact freely. Agents belonging to
a group may talk to one another, using the same language.
Moreover, groups establish boundaries. Whereas the structure of a
group A may be known by all agents belonging to A, it is hidden
to all agents that do not belong to A. Thus, groups are opaque to
each other and do not assume a general standardization of agent
interaction and architecture.

These principles are not without consequences:

1. An organization may be seen as a kind of dynamic
framework where agents are components. Entering a
group/playing a role may be seen as a plug-in process where
a component is integrated into a framework.

2. Designing systems at the organizational level may leave
implementation issues, such as the choice of building the
right agent to play a specific role, left opened.

3. It is possible to realize true “Open System” where agent’s
architecture is left unspecified.

4. It is possible to build secure systems using groups as “black
boxes” because what happens in a group cannot be seen from
agents that do not belong to that group. It is also possible to
define security policies to keep undesirable agents to enter a
group.

4. AGR: A BASIC MODEL OF OCMAS
In order to show how these principles may be actualized in a
computational model, we will present the basics and methodology
of the Agent/Group/Role model, or AGR model for short, also
known as the Aalaadin model [2] for historical reasons. We show
that this model complies with the OCMAS general principles that
we have proposed in the previous section.

4.1 Definitions
The AGR model is based on three primitive concepts, Agent,
Group and Role that are structurally connected and cannot be
defined by other primitives. They satisfy a set of axioms that unite
these concepts.

Agent: an agent is an active, communicating entity playing roles
within groups. An agent may hold multiple roles, and may be
member of several groups. An important characteristic of the
AGR model, in accordance with the principle 2 above, is that no
constraints are placed upon the architecture of an agent or about

its mental capabilities. An agent may be as reactive as an ant, or
as clever as a human, without any restriction.

Group: a group is a set of agents sharing some common
characteristic. A group is used as a context for a pattern of
activities, and is used for partitioning organizations. Following
principle 3, two agents may communicate if and only if they
belong to the same group, but an agent may belong to several
groups. This feature will allow the definition of organizational
structures.

Role: the role is the abstract representation of a functional
position of an agent in a group. An agent must play a role in a
group, but an agent may play several roles. Roles are local to
groups, and a role must be requested by an agent. A role may be
played by several agents.

4.1.1 Axioms
We note by x.send(y,m) the action of an agent x sending a
message m to an agent y, by roleIn(r,g) the statement that the role
r I defined in a group g, and by plays(a,r,g) the statement that the
the agent a plays the role r in g. We also note by GStruct(g,gs),
the statement that g is a group considered as an instance of the
group structure gs, and member(x,g) the statement that an agent x
is a member of a group g. Here are the axioms of the structural
aspect of the AGR model:
a) Every agent is member of a (at least one) group:

∀x:Agent, ∃g:Group, member(x,g)

b) Two agents may communicate only if they are members of the
same group:

∀x,y:Agent, ∀m:Message, x.send(y,m) ⇒ ∃g:Group,
member(x,g) ∧ member(y,g)

c) Every agent plays (at least one) role in a group:

∀x:Agent, ∀g:Group ⇒ ∃r:Role, plays(x,r,g)

d) An agent is a member of the group in which it plays a role:

∀x:Agent, ∀g:Group, ∀r:Role
plays(x,r,g) ⇒ member(x, g)

e) A role is defined in a group structure:

∀x:Agent, ∀g:Group, ∀r:Role, plays(x,r,g) ⇒
∃gs:GroupStructure ∧ GStruct(g,GS) ∧ roleIn(r,GS)

4.1.2 Structural constraints
Roles may be described as in Gaïa [8] by attributes such as its
cardinality (how many agents may play that role). It is also
possible to describe structural constraints between roles. A
structural constraint describes a relationship between roles that
are defined at the organizational level and are imposed to all
agents. In AGR we propose two structural constraints:
correspondence and dependence. A correspondence constraint
states that agents playing one role will automatically plays
another role. For instance, to express the, quite classical, political
correspondence between delegates of smaller groups (states,
departments, regions) which are automatically members of
another group where they act as representative (deputies,
ambassador, etc.) we would use the following statement:

Role(‘delegate’,GS1) → Role(’representative’,GS2)

where GS1 and GS2 are group structures. This constraint may be
defined as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,GS1), ∃g’:Group
where GroupStructure(g’,GS2) such that:
plays(x,’delegate’,g) ⇒ plays(a,’representative’,g’)

If the two roles have the same set of members, we will use the
notation ↔. For instance, in most human organizations
(associations, corporation, syndicates, etc.), all voters are eligible.
In our notation, we would express this constraint as:

role(‘voter’,GS1) ↔ role(‘eligible’,GS1)

whose definition is as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,GS1),
plays(x,’voter’,g) ⇒ plays(x,’eligible’,g) ∧
plays(x,’eligible’,g) ⇒ plays(x,’voter’,g)

Dependence constraints express dependencies between group
membership and role-playing. For instance an agent is authorized
to be a director of a Laboratory only if it is also a researcher in the
lab. This would be expressed in the following way:

Role(‘director’,’Lab’) requires Role(‘researcher’,’Lab’)

Its semantics could be defined in a 1st order logic as follows:

∀x:Agent, ∀g:Group, where GroupStructure(g,’Lab’),
plays(x,’director’,g) ⇒ plays(a,’researcher’,g’)

This logical semantics does not capture the fact that dependencies
are related to deontic issues such as permission: an agent is
allowed to play a ‘director’ role only if it plays a ‘researcher’ role.
In a deontic logic this would be expressed as a permission:

∀x:Agent, ∀g:Group, where GroupStructure(g,’Lab’),
plays(x,’researcher’,g) ⇒ Permitted(plays(a,’director’,g’))

However, the relation between organizational issues and deontic
logic is outside the scope of the paper (See [12] to get some ideas
about the introduction of norms in an OCMAS). The AGR meta-
model is represented figure 1 in UML.

Interaction
protocol

Group structure Role1..*

source participant

1

*

1..*

*
Role Constraint

1

1 1
target

Agent

Group

*

1..*

*

1..* plays

1
described by

1 1

initiator

1

Agent level

Organization level

Correspondence Dependency

Interaction
protocol

Group structure Role1..*

source participant

1

*

1..*

*
Role Constraint

1

1 1
target

Agent

Group

*

1..*

*

1..* plays

1
described by

1 1

initiator

1

Agent level

Organization level

Correspondence Dependency

Figure 1. The UML meta-model of AGR

4.2 Notations
Several notations may be used to represent organizations. In [13]
a notation based on UML has been proposed to represent groups
and roles. This is a very convenient notation to represent the
abstract structures of an organization, but concrete organizations
cannot be represented in this notation. This is why we will use the
following another notation, that we call the cheeseboard diagram,
which is very convenient to represent examples of concrete
organizations.

4.2.1 The “cheeseboard” diagram
In the cheeseboard diagram, a group is represented as an oval that
looks like a board. Agents are represented as skittles that stands
on the board and sometimes go through the board when they
belong to several groups.

R1 R2

R3
R4 R5

R6

A

C

B

D
E

F

H

JG1
G2

G3

Figure 2: The "cheeseboard" notation for describing concrete
organizations
A role is represented as a hexagon and a line links this hexagon to
agents. Figure 2 gives an example of a concrete organization
using the cheeseboard diagram. In this picture, the agent F is a
member of both G2 and G3, playing roles R4 and R5 in G2, and
R6 in G3.

4.2.2 Describing organizational structures
The cheeseboard notation, while very adapted for concrete
organization, is not suited to the description of relationships
within organization at an abstract level, i.e. for the definition of
organizational structures. Thus, we have introduced a notation for
describing organizational structures.

In order to express organizational diagrams in a more simple and
convenient way, we propose a set of graphical items. In this
notation, group structures, i.e. abstract representation of groups,
are represented as rectangles in which roles, represented as
hexagons, are located. Constraints are represented as arrows
between roles. We use two kinds of arrows. Large arrows are used
for correspondence and thin arrows are use for modeling
dependencies.

Interaction diagrams, which are represented as rounded
rectangles, are used to describe communication protocols between
roles. Without considering the way agents communicate, it is
possible to describe communications at an abstract level, i.e. as
specific constraints between roles. An interaction may takes place
between two or more agents and is described at the organizational
level between roles. The role initiator of the interaction is
represented by an arrow that points towards the interaction. Other

participating roles are represented as simple lines between
interaction and roles.

R1

R2

R3
R4

R5

R6

GS1 GS2

GS3

I1
I2 I4

I3

I5 I6

d1
d2

Figure 3. Organizational structure representation
The figure 3 shows an organizational structure related to the
concrete organization of figure 1. In this diagram many different
cases are represented. There are 3 group structures, called GS1,
GS2 and GS3. The dependency d1 expresses a correspondence
between the role R2 of GS1 and the role R3 of GS2. This allows
for the definition of agents that act as representative between two
groups. The dependency d2 expresses a dependency between R4
and R5, which means that all agents playing R5 must play R4.
Interactions I2, I5 and I6, which are related to only one role, will
be performed by different agents playing the same role. The
interaction I3 takes place between agents playing three roles.

Interaction may be figured by different types of diagrams:
automata, Petri nets or sequence organizational diagrams as we
will see below.

4.2.3 Describing organizational activities
To describe the dynamics of organizations, i.e. the temporal
relation that is expressed between organizational events, such as
the creation of groups, the entering or leaving of a group by an
agent or the acquisition of a role in relation, we will use a specific
notation, that we call organizational sequence diagram, which is
a variant of the sequence diagram of UML (or AUML) [14]. In
this diagram, groups are represented as big boxes that containing
small boxes, the roles, which contain what we have called the
“life lines” of agents. Whereas in AUML vertical lines correspond
to agents, in our diagram, the life of an agent is made of several
segments of the same color (unfortunately, colors are displayed as
gray levels in this paper). Each segment describes the “life” of an
agent playing a specific role in a specific group. Thus, it is
possible to represent the fact that an agent may belong to several
groups and play several roles at once. Figure 4 shows a general
view of this type of diagram.

Group1

Group3

Group2.

Role1 Role2 Role3

Role5.Role4.

t

Playing a
new role

Creation of
a new group

Leaving a role

Entering
a group

Messages

Figure 4. The organizational sequence diagram

4.2.4 Groups dynamics
Groups may be built at will. A group is created upon request of an
agent, from an already described group structure. A group
structure may be ‘blank’, thus allowing agents to build roles at
will and to enter groups without any limits. However, in the
general case, entering a group is a rather complex process,
because an agent has to be authorized to enter a group. Due to
axiom b) an agent cannot communicate directly to agents
belonging to the group. Thus, it cannot request a permission to
enter a group to agents belonging only to that group. A solution to
this problem lies in the organization itself, in its possibility to
build complex organizational structures. We will assume that an
agent is permitted to enter a group only if it provides the right
authorization. This agent could get this authorization in an
“examination” like organizational pattern. An ‘entrance’ group,
associated to the group A, acts as an “air lock” between the group
A and its exterior. There is no authorization required for A to get
the ‘candidate’ role in an entrance group. The ‘gatekeeper’ agent
could then check the conformity of this agent to the specification
of the structure and roles of the group A. Figure 5 shows this
adhesion process using a cheeseboard diagram. The semantics of
this process has been described in [15] using a variant of the π-
calculus.

It should be clear that this is only a simple aspect of all the
organizational patterns that could be used to manage the
organizational activities of an OCMAS. We just wanted to show
that it is not necessary to relate to mental issues such as beliefs or
goals to express the dynamics of an organization, and that it is
possible to manage an OCMAS using only OCMAS features!

���
���
���

���
���
���

Entering
dialog

GroupManager

Member

I want to enter
the group A

GroupManager

A

GatekeeperCandidate

Entrance Group
Authorization

���
���
���

���
���
���

Entering
dialog

GroupManager

Member

I want to enter
the group A

GroupManager

A

GatekeeperCandidate

Entrance Group
Authorization

Figure 5. The cheeseboard representation of a group adhesion
process.
Obviously, when it will come to implementation of agents,
designers would have to relate the architecture and the cognitive
properties of their agents to the organizational structure and
dynamics of such a system. We only claim that, in OCMAS, this
aspect would be considered in a second phase.

5. METHODOLOGY
Notations are not sufficient to describe a methodology. In this
paper, we will only briefly suggest the key point of how a
methodology could be defined on an OCMAS model.
The designer should first identify the main groups of the
application. A group may be used for two main purposes:

• To represent a set of similar agents. In this case, a group is
merely a collection of agents that exhibit certain similarities.
There are usually few roles and a role may contain many
agents. For instance, in AGR, to have a set of agents using
the same communication language, such as ACL FIPA, one
could design a FIPA group. Then the FIPA agents called the
Directory Facilitator (DF) and the Message Transport
Service (MTS) would be represented as agents playing the
DF and MTS roles respectively. All other agents would
merely have a simple ‘member’ role.

• To represent a function based system: each role then
corresponds to a function or a subsystem of a whole system.
Agents then act as specialists characterized by their skills to
achieve functions associated to the roles. For instance in a
computer network, printers have the ability to print and may
be associated to the role of ‘printer’. A soccer robot team
would have the roles ‘goalkeeper’, ‘leader’, ‘attacker’,
‘middle’, etc.

Once these groups have been identified, the overall organizational
structure is built using some organizational patterns [10][16] such
as the e-commerce organizational pattern that is presented in the
next section as an example.

The partitioning of agents describes the way an organization is
decomposed into its sub-components, and optionally the way
these sub-components are further decomposed into their own sub-
components, and the way these sub-components are aggregated.
In AGR, hierarchies of groups, also called holarchy by Odell and
Parunak [13] where a group is represented by an agent at the next
level, may be represented by an organizational pattern where
some ‘delegate’ agents in one group are seen as ‘representative’
agents in another group.

When the organizational structure is built together with
organizational dynamic of group creation and adhesion, it is time
to get into the definition of roles in a functional way. Then one
could use the Gaia [8] methodology to fill the roles and relate
them to the general structure. Our vision has some connection
with object-oriented design, where the key diagrams are the class
diagrams, which represent the static aspects of objects, and the
sequence diagrams, which gives an insight of the dynamic aspects
of objects. We use the same kind of distinction with the
organizational structure diagrams and the organizational sequence
diagrams. However, we often use the cheeseboard diagram to get
a first idea of the organizational patterns one could use to build an
OCMAS.

6. AN EXAMPLE
In order to explain how the AGR model may be used for
analyzing and designing multi-agent systems, we will study a
simplification of the well-known “travel agency” example that we
have abstracted into a simplified but mode general e-commerce
example. Clients try to get products from an agency considered as
a brokering agent for product providers.

We envision interaction between three group structures. The
group structure of the clients, let us call it ClientGS, that interact
with the broker; the group structure of the providers, let us call it
ProviderGS, that interact with the broker, and the group structure
of contracts, called ContractGS, which is used when a client
decides to buy a product of the provider. The structure diagram is
given figure 6.

CFP-Ask for productsRequest for a product

Broker Broker Provider

Propose and decide

ProviderGSClientGS

Revise proposition

Contract GS

Buyer Seller

Contract-signature

Client

CFP-Ask for productsRequest for a product

Broker Broker Provider

Propose and decide

ProviderGSClientGSClientGS

Revise proposition

Contract GS

Buyer Seller

Contract-signature

Client

Figure 6. The organizational structure diagram of an e-
commerce example.
When an agent enters a client group, the client talks to the broker
and asks for a product. Then the broker (the same agent that plays
the two ‘broker’ role in the client and the provider group) sends a
call for proposal to providers. Then the proposals are presented to
the client which decides which proposal to choose (this could lead
to more interactions, asking the providers to revise their
proposal). Then a contract group is created with both the client
and the chosen provider, taking the respective role of ‘Buyer’ and
‘Seller’. It is possible to represent this process, using the
organizational sequence diagram (figure 7) which shows both the
dynamic of the groups and the interaction protocol.

:ClientGS

:Contract

:ProviderGS

Client Broker Broker Provider

SellerBuyer

t

request

refuse

propose

Call-for-proposal

Request-choice

decide

Accept-proposal

establish

sign

:ClientGS

:Contract

:ProviderGS

Client Broker Broker Provider

SellerBuyer

t

request

refuse

propose

Call-for-proposal

Request-choice

decide

Accept-proposal

establish

sign

Figure 7. Organizational sequence diagram of the e-commerce
example

7. CONCLUSION
We have proposed a general framework to understand and design
MAS based on organizational concepts such as groups, roles and
interactions, which may overcome some of the weaknesses of
ACMAS. We have presented the AGR model in this framework,
showing how it is possible to design applications using these
concepts that totally adhere to the OCMAS principles that we
have introduced previously. We have also presented a set of
diagrams (organizational structure, “cheeseboard” diagram, and
organizational sequence diagrams) which may represent the
different aspects of OCMAS. We have also sketched how these
concepts may be used in a methodology based on organizational
principles.

Organizational concepts may be used for practical
implementations. The MadKit platform [17] that we have
designed is built with these concepts. Since its first release,
hundreds of users (thousands of downloads) have been able to use
these organizational concepts (presented in a less rigourous way
than here) to build applications in various areas.

Many aspects of organizations, such as functional views, deontic
aspects (concepts of norms and institutions) and the use of
reflection to build complex MAS platform, have been left over
due to the small amount of place and will be presented in future
papers.

8. REFERENCES
[1] C. Rocha Costa, Y. Demazeau, Toward a Formal Model of

Multi-Agent Systems with Dynamic Organizations,
ICMAS'96, Kyoto, AAAI Press, 1996.

[2] J. Ferber, O. Gutknecht, Aalaadin: a meta-model for the
analysis and design of organizations in multi-agent systems,
Y. Demazeau, Ed., Third International Conference on Multi-
Agent Systems, Paris, IEEE, 1998.

[3] F. Zambonelli, N. R. Jennings, M. Wooldridge, Int J. of
Software Engineering and Knowledge Engineering 11,
pp. 303-328, 2001.

[4] N. R. Jennings, Artificial Intelligence 117, pp 277-296, 2000.
[5] F. Zambonelli, H. V. D. Parunak, From Design to Intentions:

Signs of a Revolution, C. Castelfranchi, W. Lewis Johnson,
Eds., AAMAS 2002, Bologna (Italy), ACM Press, 2002.

[6] N. R. Jennings, M. Wooldridge, in Handbook of Agent
Technology J. Bradshaw, Ed., AAAI/MIT Press, 2000.

[7] L. Gasser, in Distributed Artificial Intelligence: Theory and
Praxis L. Gasser, N. M. Avouris, Eds. Kluwer Academic
Publishers, pp. 9-30, 1992.

[8] M. Wooldridge, N. R. Jennings, K. David, Journal of
Autonomous Agents and Multi-Agent Systems 3, pp. 285-
312, 2000.

[9] J. Ferber, Multi-Agent Systems: an introduction to distributed
artificial intelligence, Addison-Wesley, 1999.

[10] H. Mintzberg, The Structuring of Organizations, Prentice-
Hall, 1979.

[11] D. C. Dennett, The Intentional Stance, M.I.T. Press,
Cambridge, Massachusetts, 1987.

[12] M. Hannoun, O. Boissier, J. Sichman, C. Sayettat, Moise: an
Organizational Model for Multi-Agent Systems, Monard,
Sichman Eds, IBERAMIA/SBIA, Springer LNAI 1952, 2000.

[13] H. V. D. Parunak, J. Odell, Representing Social Structure in
UML, M. Wooldridge, P. Ciancarini, G. Weiss, Eds., Agent-
Oriented Software Engineering II, Montreal Canada Springer,
2002.

[14] B. Bauer, J. P. Müller, J. Odell, Agent UML: A Formalism
for Specifying Multiagent Interaction, P. Ciancarini, M.
Wooldridge, Eds., Agent-Oriented Software Engineering
Springer, 2001.

[15] J. Ferber, O. Gutknecht, Operational Semantics of a Role-
Based Agent Architecture, Y. Lespérance, Ed., Agent
Theories, Architectures and Languages, Orlando (Springer-
Verlag, 2000).

[16] P. Giorgini, M. Kolp, J. Mylopoulos, Organizational Patterns
for Early Requirement Analysis, IEEE Joint Int.
Requirements Engineering Conference (RE'02), Essen
(Germany), 2002.

[17] O. Gutknecht, F. Michel, J. Ferber, Integrating Tools and
Infrastructure for Generic Multi-Agent Systems, Autonomous
Agents 2001, Boston, ACM Press, 2001.

	INTRODUCTION
	DRAWBACKS OF ACMAS
	
	Analysis of some drawbacks of the classical ACMAS approach
	Solution

	ORGANIZATION CENTERED MAS
	Definitions
	General principles of OCMAS

	AGR: A BASIC MODEL OF OCMAS
	Definitions
	Axioms
	Structural constraints

	Notations
	The “cheeseboard” diagram
	Describing organizational structures
	Describing organizational activities
	Groups dynamics

	METHODOLOGY
	AN EXAMPLE
	CONCLUSION
	REFERENCES

